МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Департамент образования и молодежной политики Ханты-Мансийского автономного округа-Югры

Муниципальное образование Березовский район Ханты-Мансийский автономный округ - Югры Администрация Березовского района Комитет образования МАОУ «Хулимсунтская СОШ с кадетскими и мариинскими классами»

УТВЕРЖДЕНО
Директор МАОУ
"Хулимсунтская СОШ
с кадетскими и
мариинскими
классами"

Третьякова Г.В.
№ 230/1 от 31.08.2023

ПРОГРАММА

курс по выбору «Физика» 10-11 класс

Учитель Комаринец О.Ю.

Курс по выбору "Физика" для 10 – 11 классов

Данный курс предназначен для общеобразовательных учреждений 10-11 классов (учебник Г. Я. Мякишев, Б. Б. Буховцев), изучающих физику на базовом уровне. Программа курса учитывает цели обучения по физике учащихся средней школы и соответствует государственному стандарту физического образования. Материал излагается на теоретической основе, включающей вопросы классической механики, молекулярной физики, электродинамики, оптики и квантовой физики на углублённом уровне.

Курс "Решение Физических задач" рассчитан на 68 часов (1 час в неделю на 10-11 классы). Программа разработана с таким расчетом, чтобы учащиеся получили достаточно глубокие знания по физике и в ВУЗе смогли посвятить больше времени профессиональной подготовке по выбранной специальности.

Задачи курса

- развитие физической интуиции;
- приобретение определенной техники решения задач по физике в соответствии с возрастающими требованиями современного уровня процессов во всех областях жизнедеятельности человека.

Одно из труднейших звеньев учебного процесса — научить учащихся решать задачи. Чаще всего физику считают трудным предметом, так как многие плохо справляются с решение задач.

Цель курса

- развитие самостоятельности мышления учащихся, умения анализировать, обобщать;
- формирование метода научного познания явлений природы как базы для интеграции знаний;
- создание условий для самореализации учащихся в процессе обучения.

Структура курса полностью соответствует структуре материала, изучаемого в курсе физики 10-11классов (учебник Г.Я. Мякишев, Б.Б. Буховцев). Необходимость создания данного курса вызвана тем, что в школе курс физики изучается на базовом уровне, но есть учащиеся, которые планируют сдавать ЕГЭ по физике, и в соответствии с требованиями федеральной образовательной программы среднего общего образования, необходимо предусмотреть изучение не менее двух учебных предметов на углубленном уровне.

Программа курса предполагает проведение занятий в виде лекций и семинаров, а также индивидуальное и коллективное решение задач.

При решении задач по механике, молекулярной физике, электродинамике главное внимание обращается на формирование умений решать задачи, на накопление опыта решения задач различной сложности. Разбираются особенности решения задач в каждом разделе физики, проводится анализ решения и рассматриваются различные методы и приемы решения физических задач. Постепенно складывается общее представление о решении задач как на описание того или иного физического явления физическими законами. Учащиеся, в ходе занятий, приобретут:

- навыки самостоятельной работы;
- овладеют умениями анализировать условие задачи, переформулировать и перемоделировать, заменять исходную задачу другой задачей или делить на подзадачи;
- составлять план решения,
- проверять предлагаемые для решения гипотезы (т.е. владеть основными умственными операциями, составляющими поиск решения задачи).

Решая физические задачи, ребята должны иметь представление о том, что их работа состоит из трёх последовательных этапов:

- 1) анализа условия задачи (что дано, что требуется найти, как связаны между собой данные и искомые величины и т. д.),
- 2) собственно решения (составления плана и его осуществление),
- 3) анализа результата решения.

Главная цель анализа - определить объект (или систему), который рассматривается в задаче, установить его начальное и конечное состояние, а также явление или процесс, переводящий его из одного состояния в другое, выяснить причины изменения состояния и определить вид взаимодействия объекта с другими телами (это помогает объяснить физическую ситуацию, описанную в условии, и дать её наглядное представление в виде рисунка, чертежа, схемы). Заканчивается анализ содержания задачи краткой записью условия с помощью буквенных обозначений физических величин (обязательно указываются наименования их единиц в системе СИ).

Приступая к решению задачи, надо напомнить ученикам о необходимости иметь план действий: представлять себе, поиск каких физических величин приведёт к конечной цели.

Алгоритм решения физических задач

- 1. Внимательно прочитай и продумай условие задачи.
- 2. Запиши условие в буквенном виде.
- 3. Вырази все значения в СИ.
- 4. Выполни рисунок, чертёж, схему.
- 5. Проанализируй, какие физические процессы, явления происходят в ситуации, описанной в задаче, выяви те законы (формулы, уравнения), которым подчиняются эти процессы, явления.
- 6. Запиши формулы законов и реши полученное уравнение или систему уравнений относительно искомой величины с целью нахождения ответа в общем виде.
- 7. Подставь числовые значения величин с наименование единиц их измерения в полученную формулу и вычисли искомую величину.
- 8. Проверь решение путём действий над именованием единиц, входящих в расчётную формулу.
- 9. Проанализируй реальность полученного результата.

Формы контроля усвоенных знаний и приобретенных умений могут служить следующие виды работ

- разработка и создание компьютерной программы, иллюстрирующей явление или процесс;
- подготовка и проведение презентации, отражающей последовательность действий при исследовании влияния изменения параметра на состояние системы;
- тесты или контрольные работы.

СОДЕРЖАНИЕ ТЕМ УЧЕБНОГО КУРСА

Классическая механика

Механическое движение и его виды. Относительность механического движения. Прямолинейное равноускоренное движение. Принцип относительности Галилея. Законы динамики. Всемирное тяготение. Законы сохранения в механике. Предсказательная сила законов классической механики. Использование законов классической механики для объяснения движения небесных тел и для развития космических исследований. Границы применимости классической механики.

Демонстрации

Зависимость траектории от выбора системы отсчета.

Падение тел в воздухе и в вакууме.

Явление инерции.

Сравнение масс взаимодействующих тел.

Второй закон Ньютона.

Измерение сил. Сложение сил.

Зависимость силы упругости от деформации.

Силы трения.

Условия равновесия тел.

Реактивное движение.

Переход потенциальной энергии в кинетическую.

Знать:

Смысл понятия «физическое явление», основные положения, роль эксперимента и теории в процессе познания природы, понимать относительность механического движения. Владеть векторным и координатным способами при решении задач. Знать понятия: траектория, перемещение, материальная точка. Понимать смысл понятий: механическое движение, относительность, инерция, инертность. Формулировать и объяснять:первый закон Ньютона. Приводить примеры ИСО и НИСО. Формулировать и объяснять второй и третий закон Ньютона. Приводить примеры, иллюстрирующие границы применимости законов Ньютона. Объяснять природу взаимодействия. Исследовать механические явления в макромире. смысл физических величин: импульс тела, импульс силы; раскрывать смысл физического закона сохранения импульса. Понимать границы его применимости. смысл физических величин: работа, механическая энергия. Мощность. Знать: формулы для расчета потенциальной энергии тела в поле тяжести Земли и упругодеформированной пружины, формулу кинетической энергии тела. закон сохранения механической энергии и границы его применимости.

Уметь:

- описывать движение по графикам;
- -строить графики движения;
- читать и строить графики, выражающие зависимость кинематических величин от времени;
- определять ускорение свободного падения;
- пользоваться и приборами и применять формулы и периодического движения;
- применять полученные знания при решении задач.

Формы контроля: самостоятельные работы, физические диктанты, устный опрос.

Молекулярная физика

Возникновение атомистической гипотезы строения вещества и ее экспериментальные доказательства. Абсолютная температура как мера средней кинетической энергии теплового движения частиц вещества. *Модель идеального газа*. Давление газа. Уравнение состояния идеального газа. Строение и свойства жидкостей и твердых тел.

Законы термодинамики. Порядок и хаос. Необратимость тепловых процессов. Тепловые двигатели и охрана окружающей среды.

Демонстрации

Механическая модель броуновского движения.

Изменение давления газа с изменением температуры при постоянном объеме.

Изменение объема газа с изменением температуры при постоянном давлении.

Изменение объема газа с изменением давления при постоянной температуре.

Кипение воды при пониженном давлении.

Устройство психрометра и гигрометра.

Явление поверхностного натяжения жидкости.

Кристаллические и аморфные тела.

Объемные модели строения кристаллов.

Модели тепловых двигателей.

Знать/уметь:

Знать и понимать основные положения МКТ.

Приводить доказательства основных положений МКТ.

Понимать смысл физических величин: количество вещества, масса молекул.

Знать характеристики молекул в виде агрегатных состояний вещества. Уметь описывать свойства газов, жидкостей и твердых тел.

Объяснять с молекулярной точки зрения. Знать основное уравнение МКТ.

Уметь высказывать свое мнение.

Решать задачи.

Анализировать состояние теплового равновесия.

Объяснять понятие теплового равновесия системы. Объяснять связь кинетической энергии молекул с температурой тела. Знать сходство и различие шкалы Кельвина и шкалы Цельсия.

Знать уравнение состояния идеального газа. Знать и понимать изопроцессы, их значение в жизни. Строить и объяснять графики изопроцессов.

Знать понятие насыщенного пара. Описывать зависимость между давлением насыщенного пара и температурой. Объяснять процесс кипения с молекулярной точки зрения.

Описывать внутреннее строение кристаллических и аморфных тел. Объяснять анизотропию кристаллов, свойства аморфных тел.

Знать формулу для расчета работы в термодинамике и ее графическое истолкование. Знать формулу для расчета внутренней энергии идеального одноатомного газа.

Понимать эквивалентность количества теплоты и работы; физический смысл удельной теплоемкости.

Формулировать и объяснять первый закон термодинамики и уметь применять его для изопроцессов.

Знать смысл второго закона термодинамики и границы его применимости.

Знать устройство и принцип действия тепловых двигателей.

Формы контроля: самостоятельные работы, физические диктанты, устный опрос.

Электродинамика

Элементарный электрический заряд. Закон сохранения электрического заряда. Закон Кулона. Электрическое поле. Напряженность электрического поля.

Проводники в электрическом поле. Диэлектрики в электростатическом поле. Электрическая емкость. Энергия электростатического поля заряженного конденсатора.

Демонстрации

Электрометр

Проводники в электрическом поле.

Диэлектрики в электрическом поле.

Энергия заряженного конденсатора.

Знать/уметь:

Приводить примеры электризации. Определять знак зарядов по их взаимодействию. Знать и понимать закон сохранения электрического заряда. Понимать смысл: заряд, элементарный заряд.

Формулировать закон Кулона, объяснять значение величин, входящих в закон. Изображать силу Кулона графически. Иметь понятие о суперпозиции сил Кулона.

Понимать смысл электрического поля. Определять значение и направление. напряженность поля в данной точке. Знать принцип суперпозиции поле и уметь его применять.

Применять полученные знания при решении задач.

Понимать поведение проводников и диэлектриков в электрическом поле. Два вида диэлектриков. Понимать физический смысл диэлектрической проницаемости среды.

Определять работу электрического поля. Знать связь напряженности электрического поля и разности потенциалов. Понимать сущность эквипотенциальных поверхностей.

Знать понятие электроемкости. Знать: о типах конденсаторов, формулы для расчетов емкости и энергии конденсаторов.

Знать понятие: электрический ток. Знать условия, необходимые для существования электрического тока в цепи.

Формы контроля: самостоятельные работы, решение задач, практические работы, устный опрос, зачет.

Колебания и волны

Механические колебания. Математический маятник. Амплитуда, период, частота колебаний. Вынужденные колебания. Резонанс.

Электрические колебания. Свободные колебания в колебательном контуре. Период свободных электрических колебаний. Вынужденные колебания. Переменный электрический ток. Мощность в цепи переменного тока.

Производство, передача и потребление электрической энергии. Генерирование энергии. Трансформатор. Передача электрической энергии.

Интерференция волн. Принцип Гюйгенса. Дифракция волн.

Электромагнитные волны. Излучение электромагнитных волн. Свойства электромагнитных волн. Принцип радиосвязи. Телевидение.

Оптика

Световые лучи. Закон преломления света. Призма. Формула тонкой линзы. Получение изображения с помощью линзы. Оптические приборы. Свет — электромагнитная волна. Скорость света и методы ее измерения. Дисперсия света. Интерференция света. Когерентность. Дифракция света. Дифракционная решетка. Поперечность световых волн. Поляризация света. Излучение и спектры. Шкала электромагнитных волн.

Квантовая физика

Световые кванты. Тепловое излучение. Постоянная Планка. Фотоэффект. Уравнение Эйнштейна для фотоэффекта. Фотоны. Опыты Лебедева и Вавилова.

Атомная физика. Строение атома. Опыты Резерфорда. Квантовые постулаты Бора. Модель атома водорода по Бору. Трудности теории Бора. Квантовая механика. Гипотеза де Бройля. Корпускулярно-волновой дуализм. Дифракция электронов. Лазеры.

Физика атомного ядра. Методы регистрации элементарных частиц. Радиоактивные превращения. Закон радиоактивного распада и его статистический характер. Протонно-нейтронная модель строения атомного ядра. Дефект масс и энергия связи нуклонов в ядре. Деление и синтез ядер. Ядерная энергетика. Физика элементарных частиц.

Повторение

КАЛЕНДАРНО-ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

10 класс

Количество часов на год: 34 недели, в неделю 1, всего 34.

№ урока	Тема урока	Кол-во часов	Дата
V 1	Классическая механика		
	Глава 1. Основание классической механики (9 ч.)		
1	Основные понятия классической механики. <i>Решение задач по теме: «Путь и перемещение»</i> .	1	
2	Скорость. Ускорение. <i>Решение задач по теме: «Скорость. Ускорение»</i> .	1	
3	Динамические характеристики движения. Идеализированные объекты физики. Решение задач по теме: «Основание классической механики».	1	
4	Небесная механика. Законы ньютона. <i>Решение задач по теме:</i> «Законы Ньютона».		
5	Принципы классической механики. <i>Решение задач по теме:</i> «Закон всемирного тяготения».		
6	Решение задач по теме: «Импульс. Закон сохранения импульса».		
7	Закон сохранения механической энергии. <i>Решение задач по теме: «Закон сохранения энергии»</i> .		
Глава 2. Следствия классической механики.(4ч.)			
8	Небесная механика. Баллистика. Освоение космоса. <i>Решение</i> задач по теме: «Следствия классической механики».	1	
9	Самостоятельная работа по теме: «Классическая механика».	1	
Молекулярная физика			

	Глава 3. Основы молекулярно-кинетической теории строения вег	шества(2ч)	
10	Основные положения МКТ и их опытное обоснование. Атомы и		
	молекулы, их характеристики. Решение задач по теме:	1	
	«Основные положения МКТ. Атомы и молекулы».		
11	Взаимодействие молекул и атомов. Скорость движения молекул,		
	связь скорости с температурой тела». Решение задач по теме:	4	
	«Скорость движения молекул. Связь скорости с температурой	1	
	тела».		
	Глава 4. Основные понятия и законы термодинамики (4	y).	
12	Решение задач по теме: «Тепловое равновесие . Температура».	1	
13	Решение задач по теме: «Внутренняя энергия. Количество		
10	теплоты».	1	
14	Решение задач по теме: «Работа в термодинамике. Первый		
	закон термодинамики».	1	
15	Самостоятельная работа по теме: «Термодинамика»	1	
13	Глава 6. Свойства газов (5 ч)	1	
16	Решение задач по теме: «Основное уравнение МКТ идеального		
10	газа».	1	
17	Решение задач по теме: «Газовые законы. Применение первого		
17	закона термодинамики к изопроцессам»	1	
18	Решение задач по теме: «Влажность воздуха»	1	
19	Решение задач по теме: «КПД тепловых двигателей»	1	
20	Самостоятельная работа по теме: «Молекулярная физика»	1	
20	Глава 7. Свойства твердых тел и жидкостей(2ч.)	1	
21	Строение твердого кристаллического тела. Кристаллическая		
21	решетка, ее типы. Полиморфизм. Анизотропия свойств		
	кристаллических тел. Деформация твердого тела. Виды	1	
	деформаций. Механические свойства твердых тел.		
22	Реальный кристалл. Жидкие кристаллы и их применение.		
22	Аморфное состояние твердого тела. Полимеры. Композиты.		
	Свойства поверхностного слоя жидкости. Смачивание.	1	
	Капиллярность.		
	Электродинамика	<u> </u>	
	Электровинамика Глава 8. Электростатика(8 ч.)		
23	Электрическое поле. Напряженность. Принцип суперпозиции		
23	полей. Решение задач по теме: «Напряженность	1	
	электростатического поля».	•	
24	Решение задач по теме: «Закон Кулона».	1	
25	Решение задач по теме: «Проводники и диэлектрики в	-	
23	электростатическом поле. Работа электростатического поля.	1	
	Потенциал электростатического поля».	•	
26	Электрическая емкость. Конденсаторы. Решение задач по теме:		
20	«Электроемкость».	1	
27	Решение задач по теме: «Энергия электростатического поля		
	заряженного конденсатора».	1	
28	Решение задач по теме: «Электростатика».	1	
29	Самостоятельная работа по теме: «Электростатика».	1	
30	Обобщающее повторение курса.	1	
31	Повторение	1	
32	Tiobropoline	4	
33		.	

34			
	Итого	34	

КАЛЕНДАРНО-ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

11 класс

Количество часов на год: 34 недели, в неделю 1, всего 34.

№ урока	Тема урока	Кол-во часов	Дата
Основание классической механики (4ч.)			
1	Основные понятия классической механики. Скорость. Ускорение. Решение задач по теме: «Путь и перемещение. Скорость. Ускорение».	1	19.09
2	Небесная механика. Законы ньютона. Принципы классической механики. Решение задач по теме: «Законы Ньютона. Закон всемирного тяготения. Закон сохранения импульса».	1	19.09
3	Закон сохранения механической энергии. Решение задач по теме: «Закон сохранения энергии».	1	26.09
4	Самостоятельная работа по теме: «Классическая механика».	1	26.09
	Основы молекулярно-кинетической теории строения вещес	тва(2ч)	
5	Основные положения МКТ и их опытное обоснование. Атомы и молекулы, их характеристики. Решение задач по теме: «Основные положения МКТ. Атомы и молекулы».	1	
6	Уравнение МКТ. Уравнение состояния идеального газа. Газовые законы.	1	
	Основные понятия и законы термодинамики (2ч).		
7	Решение задач по теме: «Внутренняя энергия. Количество теплоты». Решение задач по теме: «Тепловое равновесие. Температура».	1	
8	Решение задач по теме: «Работа в термодинамике. Первый закон термодинамики».	1	
	Свойства твердых тел и жидкостей(1ч.)		
9	Свойства твердых тел, жидкостей и газов	1	
	Электростатика(3 ч.)		
10	Электрическое поле. Напряженность. Принцип суперпозиции полей. Решение задач по теме: «Напряженность электростатического поля. Закон Кулона».	1	
11	Решение задач по теме: «Проводники и диэлектрики в электростатическом поле. Работа электростатического поля. Потенциал электростатического поля». Электрическая емкость. Конденсаторы. Решение задач по теме: «Электроемкость. Энергия электростатического поля заряженного конденсатора».	1	
12	Постоянный электрический ток. ЭДС. Последовательное и параллельное соединение проводников.	1	
	Электродинамика (3ч)		
13	Правило буравчика. Сила Ампера. Сила Лоренца	1	
14	Применение правила Ленца. Закон электромагнитной индукции.	1	
15	Явление самоиндукции. Индуктивность.	1	
Механические колебания (2 ч)			
16	Законы гармонических колебаний материальной точки.	1	
17	Модели колебательных механических систем: математический	1	

маятник, пружинный маятник.		
Электромагнитные колебания (2ч)		
18 Колебательный контур. Превращение энергии при электромагнитных колебаниях.	1	
19 Различные виды сопротивлений в цепи переменного тока.	1	
Механические волны (1ч)		
20 Свойства волн. Звуковые волны.	1	
Световые волны (3 ч)	<u>.</u>	
21 Законы геометрической оптики.	1	
22 Формула тонкой линзы. Увеличение линзы.	1	
23 Интерференция волн. Дифракция волн. Поперечность	1	
световых волн. Поляризация света.	-	
Элементы теории относительности (1ч)		
24 Элементы теории относительности	1	
Излучение и спектры (1ч)		
25 Излучение и спектры	1	
Квантовая физика (3 ч)	1	
26 Фотоэффект и законы фотоэффекта.	1	
27 Модели атомов. Квантовые постулаты Бора.	1	
28 Закон радиоактивного распада.	1	
Повторение (4 ч)		
29		
30		
31		
32		
Итого	34	

Резерв 2 часа

Список литературы:

- 1. Гельфгат И.М., Генденштейн Л.Э., Кирик Л.А. 1001 задача по физике. М.: «Илекса», 2004
- 2. Мякишев Г.Я., Буховцев Б.Б. Физика-11. М.:Просвещение, 2005
- 3. Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. Физика-10. М.:Просвещение,2004
- 4. Новодворская Е.М. Методика проведения упражнений по физике. М.: изд-во «Высшая школа», 1980
- 5. Тарасов Л.В., Тарасова А.Н. Вопросы и задачи по физике. М., «Высшая школа», 1990
- 6. Кабардин О.Ф. Справочные материалы. М.:Просвещение,1991
- 7. Гладкова Р.А., Добронравов В.Е., Жданов Л.С., Цодиков Ф.С. Сборник задач и вопросов по физике. М. «Наука», 1983
- 8. Новодворская Е.М., Дмитриев Э.М. Сборник задач по физике. М. , «Оникс 21 век», «Мир и образование», 2003
- 9. Гладской В.М., Самойленко П.И. Сборник задач по физике. М.:Дрофа,2004
- 10. Губанов В.В. Физика. 10класс. Тесты. Саратов: Лицей, 2004
- 11. Губанов В.В. Физика. 11класс. Тесты. Саратов: Лицей, 2004
- 12. Степанова Г.Н. Сборник задач по физике для 10-11 классов общеобразовательных учреждений. М.:Просвещение,2003
- 13. Перельман Я.И. Занимательная физика, Чебоксары, «Наука»,1994
- 14. Перельман Я.И. Занимательная механика. Знаете ли вы физику?, М.: «АСТ», 1999.
- 15. Генденштейн Л.Э., Кирик Л.А., Гельфгат И.М. Решение ключевых задач по физике для основной школы. М.: «Алекса», 2009.
- 16. Блудов М.М. Беседы по физике. М.: «Просвещение», 1998.
- 17. Лукашик В.И., Иванова Е.В. Сборник задач по физике-7-9. М.: «Просвещение», 2008.
- 18. Марон А.Е., Марон Е.А. «Дидактические материалы-8кл», «Дрофа», Москва, 2009.
- 19. Лянина И.Я Не уроком единым. Развитие интереса к физике. М.: «Просвещение», 1998.